kornia.geometry.transform¶

The functions in this section perform various geometrical transformations of 2D images.

warp_perspective(src, M, dsize, flags='bilinear', border_mode=None, border_value=0)[source]

Applies a perspective transformation to an image.

The function warp_perspective transforms the source image using the specified matrix:

$\text{dst} (x, y) = \text{src} \left( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )$
Parameters: src (torch.Tensor) – input image. M (Tensor) – transformation matrix. dsize (tuple) – size of the output image (height, width). the warped input image. Tensor
Shape:
• Input: $$(B, C, H, W)$$ and $$(B, 3, 3)$$
• Output: $$(B, C, H, W)$$

Note

See a working example here.

warp_affine(src: torch.Tensor, M: torch.Tensor, dsize: Tuple[int, int], flags: Optional[str] = 'bilinear', padding_mode: Optional[str] = 'zeros') → torch.Tensor[source]

Applies an affine transformation to a tensor.

The function warp_affine transforms the source tensor using the specified matrix:

$\text{dst}(x, y) = \text{src} \left( M_{11} x + M_{12} y + M_{13} , M_{21} x + M_{22} y + M_{23} \right )$
Parameters: src (torch.Tensor) – input tensor of shape $$(B, C, H, W)$$. M (torch.Tensor) – affine transformation of shape $$(B, 2, 3)$$. dsize (Tuple[int, int]) – size of the output image (height, width). mode (Optional[str]) – interpolation mode to calculate output values ‘bilinear’ | ‘nearest’. Default: ‘bilinear’. padding_mode (Optional[str]) – padding mode for outside grid values ‘zeros’ | ‘border’ | ‘reflection’. Default: ‘zeros’. the warped tensor. torch.Tensor
Shape:
• Output: $$(B, C, H, W)$$

Note

See a working example here.

get_perspective_transform(src, dst)[source]

Calculates a perspective transform from four pairs of the corresponding points.

The function calculates the matrix of a perspective transform so that:

$\begin{split}\begin{bmatrix} t_{i}x_{i}^{'} \\ t_{i}y_{i}^{'} \\ t_{i} \\ \end{bmatrix} = \textbf{map_matrix} \cdot \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \\ \end{bmatrix}\end{split}$

where

$dst(i) = (x_{i}^{'},y_{i}^{'}), src(i) = (x_{i}, y_{i}), i = 0,1,2,3$
Parameters: src (Tensor) – coordinates of quadrangle vertices in the source image. dst (Tensor) – coordinates of the corresponding quadrangle vertices in the destination image. the perspective transformation. Tensor
Shape:
• Input: $$(B, 4, 2)$$ and $$(B, 4, 2)$$
• Output: $$(B, 3, 3)$$
get_rotation_matrix2d(center: torch.Tensor, angle: torch.Tensor, scale: torch.Tensor) → torch.Tensor[source]

Calculates an affine matrix of 2D rotation.

The function calculates the following matrix:

$\begin{split}\begin{bmatrix} \alpha & \beta & (1 - \alpha) \cdot \text{x} - \beta \cdot \text{y} \\ -\beta & \alpha & \beta \cdot \text{x} + (1 - \alpha) \cdot \text{y} \end{bmatrix}\end{split}$

where

$\begin{split}\alpha = \text{scale} \cdot cos(\text{angle}) \\ \beta = \text{scale} \cdot sin(\text{angle})\end{split}$

The transformation maps the rotation center to itself If this is not the target, adjust the shift.

Parameters: center (Tensor) – center of the rotation in the source image. angle (Tensor) – rotation angle in degrees. Positive values mean counter-clockwise rotation (the coordinate origin is assumed to be the top-left corner). scale (Tensor) – isotropic scale factor. the affine matrix of 2D rotation. Tensor
Shape:
• Input: $$(B, 2)$$, $$(B)$$ and $$(B)$$
• Output: $$(B, 2, 3)$$

Example

>>> center = torch.zeros(1, 2)
>>> scale = torch.ones(1)
>>> angle = 45. * torch.ones(1)
>>> M = kornia.get_rotation_matrix2d(center, angle, scale)
tensor([[[ 0.7071,  0.7071,  0.0000],
[-0.7071,  0.7071,  0.0000]]])

remap(tensor: torch.Tensor, map_x: torch.Tensor, map_y: torch.Tensor) → torch.Tensor[source]

Applies a generic geometrical transformation to a tensor.

The function remap transforms the source tensor using the specified map:

$\text{dst}(x, y) = \text{src}(map_x(x, y), map_y(x, y))$
Parameters: tensor (torch.Tensor) – the tensor to remap with shape (B, D, H, W). Where D is the number of channels. map_x (torch.Tensor) – the flow in the x-direction in pixel coordinates. The tensor must be in the shape of (B, H, W). map_y (torch.Tensor) – the flow in the y-direction in pixel coordinates. The tensor must be in the shape of (B, H, W). the warped tensor. torch.Tensor

Example

>>> grid = kornia.utils.create_meshgrid(2, 2, False)  # 1x2x2x2
>>> grid += 1  # apply offset in both directions
>>> input = torch.ones(1, 1, 2, 2)
>>> kornia.remap(input, grid[..., 0], grid[..., 1])   # 1x1x2x2
tensor([[[[1., 0.],
[0., 0.]]]])

invert_affine_transform(matrix: torch.Tensor) → torch.Tensor[source]

Inverts an affine transformation.

The function computes an inverse affine transformation represented by 2×3 matrix:

$\begin{split}\begin{bmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ \end{bmatrix}\end{split}$

The result is also a 2×3 matrix of the same type as M.

Parameters: matrix (torch.Tensor) – original affine transform. The tensor musth be in the shape of (B, 2, 3). the reverse affine transform. torch.Tensor
center_crop(tensor: torch.Tensor, size: Tuple[int, int]) → torch.Tensor[source]

Crops the given tensor at the center.

Parameters: tensor (torch.Tensor) – the input tensor with shape (C, H, W) or (B, C, H, W). size (Tuple[int, int]) – a tuple with the expected height and width of the output patch. the output tensor with patches. torch.Tensor

Examples

>>> input = torch.tensor([[
[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.],
[13., 14., 15., 16.],
]])
>>> kornia.center_crop(input, (2, 4))
tensor([[[ 5.0000,  6.0000,  7.0000,  8.0000],
[ 9.0000, 10.0000, 11.0000, 12.0000]]])

crop_and_resize(tensor: torch.Tensor, boxes: torch.Tensor, size: Tuple[int, int]) → torch.Tensor[source]

Extracts crops from the input tensor and resizes them.

Parameters: tensor (torch.Tensor) – the reference tensor of shape BxCxHxW. boxes (torch.Tensor) – a tensor containing the coordinates of the bounding boxes to be extracted. The tensor must have the shape of Bx4x2, where each box is defined in the following order: top-left, top-right, bottom-left and bottom-right. The coordinates order must be in y, x respectively. size (Tuple[int, int]) – a tuple with the height and width that will be used to resize the extracted patches. tensor containing the patches with shape BxN1xN2 torch.Tensor

Example

>>> input = torch.tensor([[
[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.],
[13., 14., 15., 16.],
]])
>>> boxes = torch.tensor([[
[1., 1.],
[1., 2.],
[2., 1.],
[2., 2.],
]])  # 1x4x2
>>> kornia.crop_and_resize(input, boxes, (2, 2))
tensor([[[ 6.0000,  7.0000],
[ 10.0000, 11.0000]]])

pyrdown(input: torch.Tensor) → torch.Tensor[source]

Blurs a tensor and downsamples it.

See PyrDown for details.

pyrup(input: torch.Tensor) → torch.Tensor[source]

Upsamples a tensor and then blurs it.

See PyrUp for details.

affine(tensor: torch.Tensor, matrix: torch.Tensor) → torch.Tensor[source]

Apply an affine transformation to the image.

Parameters: tensor (torch.Tensor) – The image tensor to be warped. matrix (torch.Tensor) – The 2x3 affine transformation matrix. The warped image. torch.Tensor
rotate(tensor: torch.Tensor, angle: torch.Tensor, center: Union[None, torch.Tensor] = None) → torch.Tensor[source]

Rotate the image anti-clockwise about the centre.

See Rotate for details.

translate(tensor: torch.Tensor, translation: torch.Tensor) → torch.Tensor[source]

Translate the tensor in pixel units.

See Translate for details.

scale(tensor: torch.Tensor, scale_factor: torch.Tensor, center: Union[None, torch.Tensor] = None) → torch.Tensor[source]

Scales the input image.

See Scale for details.

shear(tensor: torch.Tensor, shear: torch.Tensor) → torch.Tensor[source]

Shear the tensor.

See Shear for details.

class Rotate(angle: torch.Tensor, center: Union[None, torch.Tensor] = None)[source]

Rotate the tensor anti-clockwise about the centre.

Parameters: angle (torch.Tensor) – The angle through which to rotate. The tensor must have a shape of (B), where B is batch size. center (torch.Tensor) – The center through which to rotate. The tensor must have a shape of (B, 2), where B is batch size and last dimension contains cx and cy. The rotated tensor. torch.Tensor
class Translate(translation: torch.Tensor)[source]

Translate the tensor in pixel units.

Parameters: translation (torch.Tensor) – tensor containing the amount of pixels to translate in the x and y direction. The tensor must have a shape of (B, 2), where B is batch size, last dimension contains dx dy. The translated tensor. torch.Tensor
class Scale(scale_factor: torch.Tensor, center: Union[None, torch.Tensor] = None)[source]

Scale the tensor by a factor.

Parameters: scale_factor (torch.Tensor) – The scale factor apply. The tensor must have a shape of (B), where B is batch size. center (torch.Tensor) – The center through which to scale. The tensor must have a shape of (B, 2), where B is batch size and last dimension contains cx and cy. The scaled tensor. torch.Tensor
class Shear(shear: torch.Tensor)[source]

Shear the tensor.

Parameters: tensor (torch.Tensor) – The image tensor to be skewed. shear (torch.Tensor) – tensor containing the angle to shear in the x and y direction. The tensor must have a shape of (B, 2), where B is batch size, last dimension contains shx shy. The skewed tensor. torch.Tensor
class PyrDown[source]

Blurs a tensor and downsamples it.

Parameters: input (torch.Tensor) – the tensor to be downsampled. the downsampled tensor. torch.Tensor
Shape:
• Input: $$(B, C, H, W)$$
• Output: $$(B, C, H / 2, W / 2)$$

Examples

>>> input = torch.rand(1, 2, 4, 4)
>>> output = kornia.transform.PyrDown()(input)  # 1x2x2x2

class PyrUp[source]

Upsamples a tensor and then blurs it.

Parameters: input (torch.Tensor) – the tensor to be upsampled. the upsampled tensor. torch.Tensor
Shape:
• Input: $$(B, C, H, W)$$
• Output: $$(B, C, H * 2, W * 2)$$

Examples

>>> input = torch.rand(1, 2, 4, 4)
>>> output = kornia.transform.PyrUp()(input)  # 1x2x8x8